

Original Article

Structure-Activity Relationship (SAR) in Medicinal Chemistry: Focusing on Substituted Imidazole Derivatives and Their Antidiabetic Potential

Ganesh Prasad¹, Prof (Dr.) Vikas Verma²

¹Research Scholar, Department of Chemistry, Faculty of Science, P.K. University, Shivpuri (M.P.)

²Department of Chemistry, Faculty of Science, P.K. University, Shivpuri (M.P.)

Email: gpsinha83@gmail.com

Manuscript ID:

JRD -2025-171206

ISSN: [2230-9578](https://jrdrvb.org)

Volume 17

Issue 12

Pp. 30-36

December 2025

Abstract

Structure-Activity Relationship (SAR) plays a critical role in medicinal chemistry, linking chemical structures to biological activities for drug discovery. This review focuses on substituted imidazole derivatives and their antidiabetic potential. Imidazole, with its unique nitrogen-containing ring structure, exhibits significant pharmacological properties. Modifications in its molecular structure influence key factors such as receptor binding affinity, pharmacokinetics, and toxicity, enhancing its therapeutic efficacy. The review explores advancements in SAR studies for optimizing the antidiabetic activity of these derivatives, including their ability to modulate glucose metabolism and interact with biological pathways. Challenges, such as biological variability and environmental influences on drug activity, are discussed, alongside strategies to overcome them. By synthesizing recent findings, this paper underscores the importance of SAR studies in developing innovative antidiabetic agents, providing insights for future research to bridge the gap between chemical modifications and therapeutic outcomes.

Keywords: SAR, Medicinal Chemistry, Imidazole Derivatives, Antidiabetic Agents, Drug Discovery.

Introduction

The development of innovative therapeutic agents remains a cornerstone of medicinal chemistry, particularly in addressing the growing challenges of chronic diseases and drug-resistant pathogens. Imidazole derivatives, characterized by their unique five-membered ring structure with two nitrogen atoms, have emerged as versatile bioactive compounds with significant pharmacological potential. These derivatives are widely recognized for their diverse applications, including antifungal, antibacterial, and antidiabetic therapies, making them indispensable in modern drug discovery[1][2].Recent advances in the field have underscored the importance of Structure-Activity Relationship (SAR) studies in understanding and optimizing the biological activity of imidazole derivatives[3]. SAR analysis elucidates the correlation between molecular structure and biological response, enabling researchers to design compounds with enhanced therapeutic efficacy. The application of SAR methodologies has been instrumental in refining the pharmacokinetics and binding affinities of these derivatives, thus broadening their potential in addressing critical health challenges, including metabolic disorders like diabetes[4]. The ability of imidazole derivatives to selectively interact with biological targets has been pivotal in overcoming limitations such as drug resistance and toxicity. Advances in molecular fingerprinting and SAR techniques have facilitated the exploration of chemical spaces and the discovery of novel bioactive compounds with improved safety profiles [5]. This review delves into the synthesis, characterization, and therapeutic potential of substituted imidazole derivatives, with a particular focus on their antidiabetic activity. It aims to provide a comprehensive understanding of the structural factors influencing their efficacy and to identify gaps in research that could guide future studies.

Quick Response Code:

Website:
<https://jrdrvb.org/>

DOI:
10.5281/zenodo.18067984
OPEN ACCESS

Creative Commons (CC BY-NC-SA 4.0)

This is an open access journal, and articles are distributed under the terms of the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International](#) Public License, which allows others to remix, tweak, and build upon the work noncommercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Address for correspondence:

Ganesh Prasad, Research Scholar, Department of Chemistry, Faculty of Science, P.K. University, Shivpuri (M.P.)

How to cite this article:

Prasad, G., & Verma, V. (2025). Structure-Activity Relationship (SAR) in Medicinal Chemistry: Focusing on Substituted Imidazole Derivatives and Their Antidiabetic Potential. Journal of Research and Development, 17(12), 30–36. <https://doi.org/10.5281/zenodo.18067984>

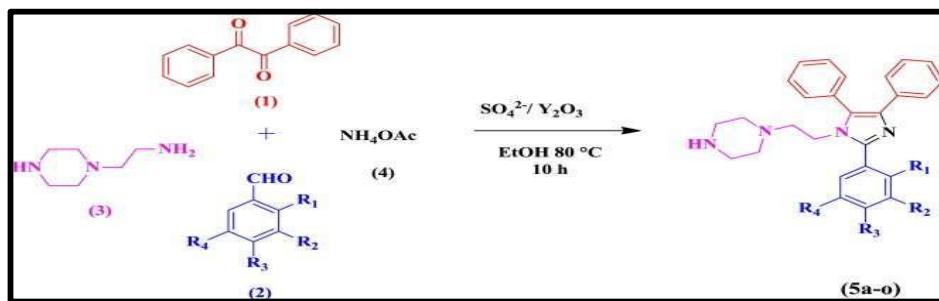


Figure 1: Structure of a substituted imidazole derivative

1. Background

Medicinal chemistry plays a pivotal role in the development of therapeutic agents, especially with the rising global health challenges posed by chronic diseases and the increasing threat of drug-resistant pathogens. Among the promising bioactive compounds, imidazole derivatives have garnered significant attention due to their distinctive five-membered ring structure and their diverse pharmacological properties, including antifungal, antibacterial, and antidiabetic activities. These derivatives exhibit a strong potential for selective interactions with biological targets, which is key to their effectiveness in drug discovery and therapeutic applications [5][6].

Imidazole derivatives, especially those modified with specific substituents, have proven to be effective against a range of diseases. Their mechanisms of action often involve inhibition of key biological processes, such as the disruption of fungal cell membranes and interference with glucose metabolism, thus showing great promise in treating conditions like diabetes. Advances in structure-activity relationship (SAR) studies have significantly contributed to understanding how molecular modifications affect biological responses, helping optimize these compounds for therapeutic use [6]. These studies are instrumental in improving pharmacokinetics, reducing toxicity, and increasing drug efficacy, which are critical factors in addressing emerging diseases and antibiotic resistance.

2 Significance of Structure-Activity Relationship (SAR)

SAR is essential in medicinal chemistry as it aids in optimizing the pharmacological properties of drug candidates. By systematically modifying chemical structures and evaluating their effects on biological activity, SAR studies allow researchers to enhance drug efficacy, selectivity, and safety. The ability to predict and refine the pharmacological behavior of compounds based on their chemical structures is fundamental in drug development. Additionally, SAR plays a key role in drug repurposing—repositioning existing drugs for new therapeutic indications—and in the optimization of drugs for better patient adherence, reduced side effects, and more targeted treatments. In this context, SAR is indispensable for the development of new therapies, particularly for complex diseases like diabetes.

3. Scope of the Review

This review focuses on the synthesis, characterization, and biological evaluation of substituted imidazole derivatives, with an emphasis on their antidiabetic potential. It examines SAR studies, exploring how modifications to the imidazole ring enhance interactions with biological receptors and optimize therapeutic outcomes. Additionally, it considers the impact of molecular structure on the pharmacokinetic properties (ADME) of these derivatives, which are critical for their efficacy in treating diabetes. The review also highlights challenges in SAR studies, such as variability in patient responses and environmental influences. Finally, it identifies gaps in current research to inform the development of more effective imidazole-based therapies for metabolic disorders and drug-resistant infections[7].

4. Objectives

The objectives of this review are as follows:

1. To analyze the role of SAR studies in optimizing the therapeutic potential of bioactive compounds.
2. To identify key structural features of imidazole derivatives that influence their antidiabetic efficacy.
3. To evaluate the challenges of conducting SAR studies and propose strategies for overcoming these obstacles in drug discovery.
4. To recommend future research directions for improving the therapeutic outcomes of imidazole derivatives in medicinal chemistry.

Literature Review

A literature review is essential in academic research, providing a synthesis of existing studies to contextualize and validate the current investigation. In medicinal chemistry, particularly in SAR studies, it helps elucidate how molecular variations influence biological activity, guiding the development of effective therapeutic agents. By analyzing key findings and methodologies, it identifies trends and gaps, shaping research objectives and approaches. A concise, well-structured review ensures the research builds on existing knowledge while addressing unresolved challenges, enhancing both its relevance and scientific rigor.

Theme	Authors	Key Findings	Gaps Identified	Ref No.
SAR in Natural Products	(Boldini et al., 2024)	Explores the use of molecular fingerprints for assessing chemical space in natural products. Highlights their application in drug discovery.	Need for better integration of SAR with bioactivity data, and focus on specific bioactive natural products.	[1]
Drug Discovery Applications	(Jadhav et al., 2024)	Reviews various drug discovery techniques and their applications in medicinal chemistry, including SAR analysis.	The application of SAR in specific diseases, including diabetes, is underexplored.	[2]
SAR in Anticancer Pyrrolidine Derivatives	(Bhat et al., 2023)	Highlights SAR in pyrrolidine derivatives and their anticancer potential. Details how structural modifications influence activity.	Limited focus on SAR for other therapeutic areas such as diabetes.	[3]
SAR in Antimalarial Triazole Derivatives	(Rahman et al., 2023)	Discusses SAR in triazole derivatives with antimalarial properties. Emphasizes structural modifications for enhanced activity.	Lack of research on SAR in antidiabetic triazole derivatives.	[4]
Thematic Analysis in SAR Studies	(Braun & Clarke, 2023)	Explores the importance of good practice in thematic analysis in SAR studies.	Need for standardized methods in SAR analysis across different disease areas.	[5]
SAR in Antifungal Triazole Derivatives	(Hu et al., 2023)	Reviews SAR of triazole derivatives with antifungal activity, with a focus on optimizing efficacy.	Limited exploration of SAR in triazole derivatives for antidiabetic use.	[6]
Sampling Methods in Medicinal Chemistry	(Golzar et al., 2022)	Discusses convenience sampling methods in medicinal chemistry studies, including SAR analysis.	Gap in using more diverse sampling methods in SAR studies related to diabetes.	[7]
SAR of Thiazole Derivatives	(Singh et al., 2022)	Focuses on SAR of thiazole derivatives, emphasizing pharmacological outcomes and synthetic strategies.	Need for more targeted research on thiazole derivatives in antidiabetic drug discovery.	[8]
SAR of Rhodanine Derivatives	(Yin et al., 2022)	Investigates the SAR of rhodanine derivatives, highlighting anticancer properties and potential.	Lack of focus on SAR for other diseases, such as diabetes.	[9]
SAR of Coumarin Derivatives	(Keri et al., 2022)	Reviews SAR of coumarin derivatives as anticonvulsant agents and their medicinal potential.	Insufficient exploration of SAR in coumarin derivatives for antidiabetic activity.	[10]
Declining Share of Primary Data	(Cerar et al., 2021)	Discusses the declining use of primary data in international business research and the neglect of individual-level studies.	Need for more individualized approaches in international business research.	[11]
SAR of Spautin-1 Derivatives	(Elsocht et al., 2021)	Studies the SAR of Spautin-1 derivatives, discovering novel NEK4 inhibitors.	Lack of exploration into SAR for other therapeutic targets.	[12]
Pyrrolidine in Drug Discovery	(Li Petri et al., 2021)	Highlights the versatility of pyrrolidine as a scaffold in drug discovery, focusing on its bioactivity.	Further exploration of pyrrolidine derivatives in diabetes-related research.	[13]

SAR of Oxadiazole Derivatives	(Verma et al., 2021)	Investigates SAR of oxadiazole derivatives with anti-tuberculosis activity.	Limited exploration of SAR for oxadiazole derivatives in antidiabetic drug discovery.	[14]
Dual-Target Compounds for Alzheimer's	(Ferreira et al., 2021)	Reviews SAR of dual-target compounds for Alzheimer's disease, focusing on AChE and BACE-1 inhibitors.	Insufficient focus on dual-target compounds for diabetes.	[15]
SAR in Remote Sensing	(Rubel, 2021)	Discusses the selection of lee filter window size for improving despeckling efficiency in Sentinel SAR images.	Not directly related to medicinal chemistry or SAR for drug discovery.	[16]
SAR Maps in Medicinal Chemistry Education	(Frey, 2020)	Introduces SAR maps as a tool to teach medicinal chemistry, making the process more accessible for students.	Lack of integration of SAR maps in specialized fields like antidiabetic drug discovery.	[17]
Approaches to Drug Discovery Success	(Kiriiri et al., 2020)	Reviews various approaches to improve the success of drug discovery and development projects.	Need for more specific strategies related to SAR in antidiabetic drugs.	[18]
SAR of Morpholine Derivatives	(Kumari & Singh, 2020)	Investigates SAR of morpholine derivatives and their role in medicinal chemistry.	Limited research on morpholine derivatives for antidiabetic applications.	[19]
Computational Approaches in Drug Discovery	(Wu et al., 2020)	Reviews the role of computational approaches in preclinical drug discovery, including SAR modeling.	Need for better computational tools in SAR for diabetes-related drug discovery.	[20]
SAR of Anti-HIV Agents	(Huang et al., 2019)	Reviews the SAR of anti-HIV agents, focusing on synthetic routes and their bioactivity.	Limited exploration of SAR for anti-HIV agents in the context of diabetes.	[21]
SAR of N-Methylpicolinamides	(Moku et al., 2019)	Discusses the SAR of N-methylpicolinamides in the development of anticancer therapeutics.	Lack of SAR research for N-methylpicolinamides in diabetes-related therapies.	[22]
SAR of GSK-3β Inhibitors	(Xu et al., 2019)	Reviews SAR of synthetic glycogen synthase kinase-3 β inhibitors, emphasizing their potential as therapeutic agents.	Insufficient research on GSK-3 β inhibitors for diabetes treatment.	[23]
SAR in Toxicological Assessments	(Lester et al., 2018)	Highlights the role of expert judgment in SAR-based toxicological assessments.	Need for more toxicological studies for SAR in diabetes drug development.	[24]
SAR of Pyrazolopyridine Derivatives	(Xing et al., 2018)	Investigates the SAR of pyrazolopyridine derivatives as inhibitors of enterovirus replication.	Limited focus on SAR for pyrazolopyridine derivatives in diabetes-related applications.	[25]

Methodology

This section outlines the systematic approach used to explore the antidiabetic potential of substituted imidazole derivatives through Structure-Activity Relationship (SAR) studies. The methodology ensures that the study's objectives are met through reliable data collection and rigorous analysis, underpinned by a positivist research philosophy that emphasizes objectivity and causality. An explanatory research design is employed to identify relationships between variables, using a deductive approach to test pre-established hypotheses against collected data.

1 Data Collection

Data collection for this study primarily relies on secondary sources, including peer-reviewed scientific literature, books, and reputable journals. The use of secondary data ensures accessibility, cost-effectiveness, and reliability, allowing the research to build on established findings. The following criteria are applied for data selection:

Inclusion Criteria: Studies published from 2020 onward, written in English, and employing quantitative methodologies relevant to SAR studies of bioactive compounds.

Exclusion Criteria: Studies published prior to 2020, those lacking quantitative methods, and studies published in non-reputable journals or in languages other than English.

Search Methodology: Searches are conducted using scientific databases with keywords such as "bioactive compounds," "imidazole derivatives," and "SAR in drug discovery" to gather relevant information on the biological activities of imidazole derivatives and related SAR studies.

2 Analysis Method

The collected secondary data is analyzed using a thematic analysis framework, which allows for identifying and interpreting patterns within the dataset. This method ensures the synthesis of findings into coherent themes. The analysis process is structured as follows:

Thematic Categorization: Key themes are identified from the data, including factors influencing the biological activities of bioactive compounds, challenges in SAR studies, and strategies to overcome these challenges.

Iterative Analysis: The analysis is iterative, enabling the emergence of new themes as the data is reviewed in depth. This ensures the comprehensive exploration of the subject matter.

Literature Gap Identification: The analysis process helps identify gaps in the current literature, highlighting areas for further research, particularly in understanding the antidiabetic properties of imidazole derivatives and their role in drug discovery.

Discussion

This section discusses the findings derived from the thematic analysis of the secondary data on substituted imidazole derivatives and their potential in treating diabetes through Structure-Activity Relationship (SAR) studies. The discussion connects these findings to the study's objectives and hypotheses, enhancing our understanding of the biological activities of these compounds.

1 Key Structural Features Influencing Biological Activity

The biological activity of imidazole derivatives, particularly their antidiabetic potential, is highly influenced by structural modifications to the imidazole ring. Substituents at the 4-position, such as halogens and alkyl groups, enhance antidiabetic potency by improving receptor binding and bioavailability. Modifications at the 2- and 5-positions, including halogens (e.g., chlorine, fluorine) and aromatic groups, affect interactions with biological targets like PPAR and insulin receptors. Alkyl groups tend to improve activity, while aromatic substitutions may decrease receptor interaction. Nitrogen-containing groups such as amino or nitro groups at these positions can reduce activity and pose toxicity risks. These structural relationships are crucial for designing compounds with optimized therapeutic effects.

2 Challenges in Conducting SAR Studies

SAR studies face challenges due to inconsistent experimental methodologies, variations in animal models, testing conditions, and dosages, making comparisons difficult. Many studies overlook crucial pharmacokinetic properties (ADME) and fail to fully characterize active compounds, hindering understanding of structure-activity relationships. Additionally, insufficient toxicological data and potential side effects can impede drug development.

3 Strategies to Overcome Challenges

To address these challenges, it is essential to adopt standardized experimental protocols, ensuring consistency in data collection and comparability across studies. Early pharmacokinetic evaluation of promising imidazole derivatives can help predict their clinical success and reduce the likelihood of failures at later stages. Computational tools such as molecular docking and simulations can efficiently assess interactions between compounds and their targets, facilitating the identification of promising candidates. Comprehensive toxicity profiling in preclinical studies can mitigate risks associated with unforeseen side effects, streamlining the path to clinical trials.

Conclusion

This review underscores the pivotal role of Structure-Activity Relationship (SAR) studies in advancing the development of substituted imidazole derivatives as promising antidiabetic agents. By analyzing structural modifications and their biological effects, SAR provides critical insights into enhancing therapeutic efficacy and minimizing side effects. Despite existing challenges, including variability in methodologies and limited pharmacokinetic data, integrating standardized protocols, computational tools, and interdisciplinary approaches holds great promise. These advancements pave the way for innovative drug discovery, offering significant potential for addressing the global burden of diabetes.

References

1. Boldini, D., Ballabio, D., Consonni, V., Todeschini, R., Grisoni, F., & Sieber, S. A. (2024). Effectiveness of molecular fingerprints for exploring the chemical space of natural products. *Journal of Cheminformatics*, 16(1), 35.
2. Jadhav, S. S., Rohane, S. H., & Redasani, V. K. (2024). Drug discovery and its applications. *Asian Journal of Pharmaceutical Research and Development*, 11(3), 176- 186.
3. Bhat, A. A., Singh, I., Tandon, N., & Tandon, R. (2023). Structure activity relationship (SAR) and anticancer activity of pyrrolidine derivatives: Recent developments and future prospects (A review). *European Journal of Medicinal Chemistry*, 246, 114954.
4. Rahman, S. M. A., Bhatti, J. S., Thareja, S., & Monga, V. (2023). Current development of 1, 2, 3-triazole derived potential antimalarial scaffolds: Structure activity relationship (SAR) and bioactive compounds. *European Journal of Medicinal Chemistry*, 115699.
5. Braun, V., & Clarke, V. (2023). Toward good practice in thematic analysis: Avoiding common problems and becoming a knowing researcher. *International Journal of Transgender Health*, 24(1), 1-6.
6. Hu, Y., Liu, Z., Zha, G., Long, S., Sridhara, M. B., Kumar, K. S. S., & Rakesh, K. P. (2023). Triazole derivatives as potential antifungal agents: A structure-activity relationship (SAR) studies. *Process Biochemistry*.
7. Golzar, J., Noor, S., & Tajik, O. (2022). Convenience sampling. *International Journal of Education & Language Studies*, 1(2), 72-77.
8. Singh, A., Malhotra, D., Singh, K., Chadha, R., & Bedi, P. M. S. (2022). Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. *Journal of Molecular Structure*, 1266, 133479.
9. Yin, L. J., bin Ahmad Kamar, A. K. D., Fung, G. T., Liang, C. T., & Avupati, V. R. (2022). Review of anticancer potentials and structure-activity relationships (SAR) of rhodanine derivatives. *Biomedicine & Pharmacotherapy*, 145, 112406.
10. Keri, R. S., Budagumpi, S., & Balappa Somappa, S. (2022). Synthetic and natural coumarins as potent anticonvulsant agents: A review with structure-activity relationship. *Journal of Clinical Pharmacy and Therapeutics*, 47(7), 915-931.
11. Cerar, J., Nell, P. C., & Reiche, B. S. (2021). The declining share of primary data and the neglect of the individual level in international business research. *Journal of International Business Studies*, 52(7), 1365-1374.
12. Elsocht, M., Giron, P., Maes, L., Versées, W., Gutierrez, G. J., De Grève, J., & Ballet, S. (2021). Structure-activity relationship (SAR) study of Spautin-1 to entail the discovery of novel NEK4 inhibitors. *International Journal of Molecular Sciences*, 22(2), 635.
13. Li Petri, G., Raimondi, M. V., Spanò, V., Holl, R., Barraja, P., & Montalbano, A. (2021). Pyrrolidine in drug discovery: A versatile scaffold for novel biologically active compounds. *Topics in Current Chemistry*, 379, 1-46.
14. Verma, S. K., Verma, R., Verma, S., Vaishnav, Y., Tiwari, S. P., & Rakesh, K. P. (2021). Anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review. *European Journal of Medicinal Chemistry*, 209, 112886.
15. Ferreira, J. P., Albuquerque, H. M., Cardoso, S. M., Silva, A. M., & Silva, V. L. (2021). Dual-target compounds for Alzheimer's disease: natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). *European Journal of Medicinal Chemistry*, 221, 113492.
16. Rubel, O., Lukin, V., Rubel, A., & Egiazarian, K. (2021). Selection of lee filter window size based on despeckling efficiency prediction for sentinel SAR images. *Remote Sensing*, 13(10), 1887.
17. Frey, K. M. (2020). Structure activity relationship (SAR) maps: A student-friendly tool to teach medicinal chemistry in integrated pharmacotherapy courses. *Currents in Pharmacy Teaching and Learning*, 12(3), 339-346.
18. Kiriiri, G. K., Njogu, P. M., & Mwangi, A. N. (2020). Exploring different approaches to improve the success of drug discovery and development projects: A review. *Future Journal of Pharmaceutical Sciences*, 6, 1-12.
19. Kumari, A., & Singh, R. K. (2020). Morpholine as ubiquitous pharmacophore in medicinal chemistry: Deep insight into the structure-activity relationship (SAR). *Bioorganic Chemistry*, 96, 103578.
20. Wu, F., Zhou, Y., Li, L., Shen, X., Chen, G., Wang, X., Liang, X., Tan, M., & Huang, Z. (2020). Computational approaches in preclinical studies on drug discovery and development. *Frontiers in Chemistry*, 8, 726.
21. Huang, Y. M., Alharbi, N. S., Sun, B., Shantharam, C. S., Rakesh, K. P., & Qin, H. L. (2019). Synthetic routes and structure-activity relationships (SAR) of anti-HIV agents: A key review. *European Journal of Medicinal Chemistry*, 181, 111566.
22. Moku, B., Ravindar, L., Rakesh, K. P., & Qin, H. L. (2019). The significance of N-methylpicolinamides in the development of anticancer therapeutics: Synthesis and structure-activity relationship (SAR) studies. *Bioorganic Chemistry*, 86, 513-537.
23. Xu, M., Wang, S. L., Zhu, L., Wu, P. Y., Dai, W. B., & Rakesh, K. P. (2019). Structure-activity relationship (SAR)

studies of synthetic glycogen synthase kinase-3 β inhibitors: a critical review. European journal of medicinal chemistry, 164, 448-470.

24. Lester, C., Reis, A., Laufersweiler, M., Wu, S., & Blackburn, K. (2018). Structure activity relationship (SAR) toxicological assessments: The role of expert judgment. *Regulatory Toxicology and Pharmacology*, 92, 390-406.

25. Xing, Y., Zuo, J., Krogstad, P., & Jung, M. E. (2018). Synthesis and Structure–activity relationship (SAR) studies of novel pyrazolopyridine derivatives as inhibitors of enterovirus replication. *Journal of Medicinal Chemistry*, 61(4), 1688-1703.

26. Spinelli, F., Capparelli, E., Abate, C., Colabufo, N. A., & Contino, M. (2017). Perspectives of Cannabinoid Type 2 Receptor (CB2R) Ligands in Neurodegenerative Disorders: Structure–Affinity Relationship (SAfIR) and Structure–Activity Relationship (SAR) Studies: Miniperspective. *Journal of Medicinal Chemistry*, 60(24), 9913-9931.

27. Akhtar, J., Khan, A. A., Ali, Z., Haider, R., & Yar, M. S. (2017). Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. *European journal of medicinal chemistry*, 125, 143-189.

28. Sharma, A., Kumar, V., Kharb, R., Kumar, S., Chander Sharma, P., & Pal Pathak, D. (2016). Imidazole derivatives as potential therapeutic agents. *Current Pharmaceutical Design*, 22(21), 3265-3301.

29. Gilmore, J. L., Sheppeck, J. E., Watterson, S. H., Haque, L., Mukhopadhyay, P., Tebben, A. J., ... & Dyckman, A. J. (2016). Discovery and structure–activity relationship (SAR) of a series of ethanolamine-based direct-acting agonists of sphingosine-1-phosphate (S1P1). *Journal of Medicinal Chemistry*, 59(13), 6248-6264.

30. Yadav, G., & Ganguly, S. (2015). Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. *European journal of medicinal chemistry*, 97, 419-443.

31. Kim, S., Han, L., Yu, B., Hähnke, V. D., Bolton, E. E., & Bryant, S. H. (2015). PubChem structure–activity relationship (SAR) clusters. *Journal of cheminformatics*, 7, 1-22.

32. Razzaghi-Asl, N., Garrido, J., Khazraei, H., Borges, F., & Firuzi, O. (2013). Antioxidant properties of hydroxycinnamic acids: a review of structure-activity relationships. *Current medicinal chemistry*, 20(36), 4436-4450.

33. Stumpfe, D., & Bajorath, J. (2012). Exploring activity cliffs in medicinal chemistry: miniperspective. *Journal of medicinal chemistry*, 55(7), 2932-2942.